
Chapter 20 

Markov and Semi-Markov Reward  
Processes and Stochastic Annuities  

20.1. Reward processes 

The association of a sum of money a state of the system and a state transition 
assumes great relevance in the study of financial events. This can be done by linking 
a reward structure to a stochastic process. This structure can be thought of as a 
random variable associated with the state occupancies and transitions (see Howard 
(1971)). 

 
The rewards can be of different kinds, but in the financial environment only 

amounts of money will be considered as rewards. These amounts can be positive if 
they are seen as a benefit for the system, and negative if they are considered as a 
cost. 

 
In this chapter, reward structures for discrete-time Markov and semi-Markov 

processes and how they can be considered a generalization of deterministic annuities 
will be described. Only the case of discrete-time reward structures and their relations 
to the discrete-time annuities will be presented. 

 
A simple classification scheme of the different kinds of Discrete-time Markov 

ReWard Processes (DTMRWP) and Semi-Markov ReWard Processes (DTSMRWP) 
given in Janssen and Manca (2006, 2007) will be reported. 
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Process classification 

Homogenous 
Non-homogenous 
 
Continuous time 
Discrete-time 
 
Not discounted 

Fixed interest rate 
Homogenous interest law Discounted 

Variable interest rate 
Non-homogenous interest law 

Reward classification 

Time fixed rewards 
Homogenous rewards 

Time variable rewards 
Non-homogenous rewards 

 
Transition (impulse) rewards 

Immediate 
Due 
 
Independent on next transition 

Permanence (rate) rewards 

Dependent on next transition 
 
Some clarifications as regards the homogenity concept are necessary. 
 
It is assumed that a phenomenon depends on time. We follow the phenomenon in 

the interval times 1 1,s t  and 2 2,s t  where 1 1 2 2t s t s . If the phenomenon 
behaves in the same way in the two time intervals and in each interval for the same 
time period, we say that it is homogenous. On the other hand, in the case in which 
the phenomenon changes not only for time duration but also because of the initial 
time, then the phenomenon is non-homogenous. 

 
In general, this distinction is made in the stochastic processes environment, but 

also, as described in previous chapters, an interest rate law can be homogenous or 
non-homogenous. It is homogenous if the discount factor is a function of only the 
length of the financial operation, and is non-homogenous if the discount factor also 
takes into account not only the duration but also the initial time of the operation. 

 
For the same reason, rewards can also be fixed in time, can depend only on the 

duration or can be non-homogenous in time. 
 
It should be stated that in finance and insurance problems reward processes 

without discount do not normally make sense, but in some reliability problems they 
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could have some meaning. Furthermore, the absence of interest rates simplifies the 
model. In this chapter, we will develop only discounted processes, the non-
discounted DTMRWP and DTSMRWP description can be found in Janssen and 
Manca (2007). A very short description of reward processes with the study of some 
properties can be found in Rolski et al. (1999). 

 
In a discrete-time process and as a first approach, the rewards that depend on 

permanence in the state could be considered as a generalization of discrete-time 
annuity. As for the annuities, there are immediate permanence rewards that are paid 
at the end of a period and due permanence rewards that are paid at beginning of a 
period. 

 
All the hypotheses imply different formulae of the system evolution equation. 

The general relations in both homogenous and non-homogenous environments will 
be given. 

Discounting factors 

As regards the financial notations, it is assumed that we are working in a general 
environment with variable interest rates. In the homogenous case, the following  

(1), (2), , ( ),r r r t  

will denote the interest rates and 

1

1

1 if 0,

( )
1 ( ) if 0,

t

h

t

t
r h t

 (20.1) 

the t-period discount factor, if it begins at time 0. In this case, we can also obtain: 

1

1

1 if ,

( , )
1 ( ) if .

t

h s

t s

s t
r h t s

 (20.2) 

In the non-homogenous interest rate case, the following notations will be used: 

( , 1), ( , 2), , ( , ),r s s r s s r s s t , 
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for the discrete-time non-homogenous interest rates and: 

1

1

1 if ,

( , )
1 ( , ) if ,

t

h s

t s

s t
r s h t s

 (20.3) 

for the non-homogenous discount factors. 

Reward notation 

(i) , ( ), ( , )i i it s t  denote the reward that is given for permanence in the ith 
state; it is also called rate reward (see Qureshi and Sanders (1994)); the first is paid 
in cases in which the period amount in state i is constant in time, the second when 
the payment is a function of the state and of the duration inside the state 
(homogenous payment) and the third when there is a non-homogenous period 
amount (the payment is a function of the state, the time of entrance into the state and 
the time of payment).  represents the vector of these rewards. 

(ii) , ( ), ( , )ij ij ijt s t  have the same meaning as given previously, the 
difference being that, in this case, the rewards depend on the future transition.  
represents the related matrix. It should be said that these kinds of permanence 
rewards are usually presented in the other works (see Papadopoulou and Tsaklidis 
(2006)) and can be seen as a generalization of case (i). In a financial environment, 
this kind of generalization will not make sense, so we will not present them; the 
interested reader can refer to Janssen and Manca (2006) and (2007).  

(iii) , ( ), ( , )ij ij ijt s t  denote the reward that is given for the transition from the 
ith state to the jth one (impulse reward); the difference between the three symbols is 
the same as in the previous cases. is the matrix of the transition rewards. 

 
The different kinds of  rewards represent an annuity that is paid due to 

remaining in a state. In the immediate case, the reward will be paid at the end of the 
period before the transition; in the due case the reward will be paid at the beginning 
of the period. On the other hand,  represents lump sums that, theoretically, are 
paid at the instant of transition. 

 
As far as the impulse reward  is concerned, in the case of discounting it is only 

necessary to calculate the present value of the lump sum paid at the moment of the 
related transition and that does not present any difficulties. 

 
Reward structure can be considered a very general structure linked to the problem 

being studied. The reward random variable evolves together with the evolution of the 
Markov or semi-Markov process with which it is linked. When the considered system, 
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which evolves dynamically in a random way, is in a state, then a reward of type  
can be paid; once there is a transition, an impulse reward of  type can be paid. 

 
This behavior is particularly efficient at constructing models which are useful for 

following, for example, the dynamic evolution of insurance problems. 
 
Usually, in fact, permanence in a state involves the periodic payment of a 

premium or the periodic receipt of a claim. Furthermore, the transition from one 
state to another can often give rise to some other cost or benefit. 

 
In the last part of this section, some matrix operation notation useful for 

describing the evolution equation of the reward processes will be given. 

Matrix operations 

Given the two matrices A, B with the notations 

and  A B A B  

respectively the usual row column and the element by element matrix multiplication 
are denoted. It is clear that in the first case the number of columns in A should be 
equal to the number of the rows in B and that in the second operation the two 
matrices should have the same order of rows and columns.   

 
Definition 20.1 Given two matrices ,A B  that have row order equal to m and 
column order equal to n, the following operation is defined: 

c A B   (20.4) 

where c is the m elements vector in which the ith component is obtained in the 
following way: 

1

( ) .
n

ij ij i i
j

c i a b a b   (20.5) 

20.2. Homogenous and non-homogenous DTMRWP 

In our opinion, Markov reward processes should be considered a class of 
stochastic processes, each having different evolution equations. The differences 
from the analytic point of view can be considered irrelevant but from the algorithmic 
point of view the differences are very significant and in the construction of the 
algorithm the differences must be taken into account. 
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andi iV V  represent the mean present value of the rewards (RMPV) paid in the 
investigated horizon time in the homogenous immediate and due cases respectively. 

 
For the sake of classification, first we present the simplest evolution equation 

case in immediate and due hypotheses and only in the homogenous case; 
subsequently, only the general relations in the discrete-time environment will be 
given. 

 
The immediate homogenous Markov evolution equation in the case of fixed 

permanence and without transition rewards is the first relation presented. The 
DTMRWP present value after one payment is:  

1 1(1) (1 ) (1 )i i iV r r , (20.6) 

after two payments, 

(1) (1)1 2 2

1 1

(2) (1 ) (1)
m m

i i ik k i ik k
k k

V r p V p , (20.7) 

and in general, taking into account the recursive nature of relations, at the nth period is: 

( 1)

1

( ) ( 1)
m

nn
i i ik k

k

V n V n p , (20.8) 

that in matrix form becomes: 

( 1)( ) n nnV P  (20.9) 

Now the related due case is given: 

(1)i iV , 

(1)1 1

1 1

(2) (1 ) (1) (1 )
m m

i i ik k i ik k
k k

V r p V r p , (20.10) 

( 1)1

1

( ) ( 1) (1 ) ,
m

nn
i i ik k

k

V n V n r p  (20.11) 

that in matrix form is: 

1 ( 1)( ) n nnV I P P  (20.12) 

Now the general case with variable permanence, transition rewards and interest 
rates is presented. The present value after one period is: 
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1

(1) (1) (1) (1) ,
m

i i ij ij
j

V p  (20.13) 

after two payments, 

1

1 1

1 1

(2) (1) (1) (1)

(2) (2) (2)

(1) (2) (2) (2) ,

m

i i ij ij
j

m m

ik k kj kj
k j

m m

i ik k kj kj
k j

V p

p p

V p p

 (20.14) 

and in general, taking into account the recursive nature of relations, at the nth period is: 

( 1)

1 1

( ) ( 1) ( ) ( ) ( ) .
m m

n
i i ik k kj kj

k j

V n V n n p n p n  (20.15) 

This relation can be written in matrix notation in the following way: 

( 1)

( 1)

( ) (1) (1) ( ) ( )

(1) (1) ( ) ( ) .

n

n

n n n

n n

V P

P P P
 (20.16) 

In the case of one period payment due, i.e. the permanence reward is paid at the 
beginning of the period and the transition reward at the end, we have: 

1

(1) (1) (1) (1),
m

i i ij ij
j

V p   (20.17) 

with two payments we obtain: 

1

1 1 1

1 1 1

(2) (1) (1) (1)

(1) (2) (2) (2)

(1) (1) (1) (2) (2).

m

i i ik ik
k

m m m

ij j ik kj kj
j k j

m m m

i ik k ik kj kj
k k j

V p

p p p

V p p p

 (20.18) 

At last, the general relation in the due homogenous Markov case is: 
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( 1) ( 1)

1 1 1

( ) ( 1) ( ) ( ) ( 1) ( ),
m m m

n n
i i kj kj kik ik

k j k

V n V n n p p n n p n  (20.19) 

which in matrix notation is: 

( 1)

( 1)

( ) (1) (1) (2) ( 1) ( )

(1) (1) ( ) ( ) .

n

n

n n n

n n

V I P P

P P P
 (20.20) 

Now the non-homogenous formulae with non-homogenous interest rates and 
rewards are reported. The first gives the immediate case, that is: 

( 1)

1 1

( , ) ( , 1) ( , ) ( ) ( , ) ( ) ( , ) ,
m m

n
i i ik k kj kj

k j

V s t V s t s t p s s t p t s t  (20.21) 

where t s n . 
 

In matrix form, (20.21) becomes: 

( 1) ( 1)

( , ) ( , 1) ( , 1) ( , 1) ( 1) ( , 1)

( , ) ( ) ( , ) ( , ) ( ) ( ) ( , ) ,n n

s t s s s s s s s s s

s t s s t s t s t s t

V P

P P P
 (20.22) 

where ( ) ( ) ( 1) ( 2) ( )n s s s tP P P P  and ( )sP  is the non-homogenous 
transition matrix at time s. 
 

The related due case has the following notation: 

( 1)

1

( 1)

1 1

( , ) ( , 1) ( , 1) ( ) ( , )

( , ) ( ) ( ) ( , ),

m
n

i i ik k
k

m m
n

ik kj kj
k j

V s t V s t s t p s s t

s t p s p t s t

 (20.23) 

which in matrix formula becomes: 

( 1)

( 1)

( , ) ( , 1) ( , 1) ( ) ( , 2)

( , 1) ( ) ( , ) ( , 1) ( 1) ( , 1)

( , ) ( ) ( ) ( , ) .

n

n

s t s s s s s s s

s t s s t s s s s s

s t s t s t

V P

P P

P P

 (20.24) 

Remark 20.1 In this section, general formulae were presented. In the construction 
of the algorithms the differences between the possible cases should be taken into 
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account and it is possible to construct a generalization. For example, in the non-
discounting case ( ) 1, 1, ,k k n  can be stated. 

20.3. Homogenous and non-homogenous DTSMRWP  

20.3.1. The immediate cases 

20.3.1.1. First model 

We assume that all the rewards are discounted at time 0 in the homogenous case 
and at time s in the non-homogenous case. Let us point out that these models, as we 
will see below, are very important for insurance applications. In the first formulation 
of this case we suppose that: 

a) rewards are fixed in time; 

b) rewards are given only for the permanence in the state; 

c) rewards are paid at the end of the period; 

d) interest rate r is fixed. 
 
In this case, ( )iV t  represents the mean present value of all the rewards (RMPV) 

paid or received in a time t, given that at time 0 the system is in state i. 
 
Under these hypotheses, a similar reasoning as before leads to the following 

result for the evolution equation, firstly for the homogenous case. Trivially it results 
in: 

(0) 0,iV  
1

1 1 1

1 1 1

1

(1) 1 (1) (1) ( ) (1 )

,

m m

i i i ik i ik k
k k

i

V H b b V
 (20.25)

 

and in general: 

1 1 1 1

( ) (1 ( )) ( ) ( ) ( ) .
m t m t

i i i ik i ik kt r r
k k

V t H t a b a b V t  (20.26) 
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For the non-homogenous case, this last result becomes: 

1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , ) .

m t

i i i ik it s r sr
k s

m t
s

ik k
k s

V s t H s t a b s a

b s V t

 (20.27) 

To explain these results, we divide the evolution equation into three parts. The 
meaning is the same as given in the previous cases but we use annuity formulae. 

 
Let us just give the following comments: 

– The term (1 ( , ))i i t s rH s t a  represents the present value of the rewards 
obtained without state changes. More precisely, (1 ( , ))iH s t  is the probability to 
remain in state i and i t s ra

 

is the present value of a constant annuity of t-s 
installments i . 

– The term 
1 1

( , )
m t

ik i sr
k s

b s a  gives the present value of the rewards 

obtained before the change of state. 

– The term 
1 1

( , ) ( , )
m t

s
ik k

k s

b s V t  gives the present value of the rewards 

paid or earned after the transitions and as the change of state happens at time , it 
is necessary to discount the reward values at time s. 

 
As for DTMRWP we will give the matrix equation of each given relation. 
 
To present the matrix form of the previous relations we have to define the 

following matrices: 

if if

if if

1 ( ) 1 ( , )
( ) , ( , )

0 0
i i

ij ij

H t i j H s t i j
D t D s t

i j i j
. 

Relations (20.26) and (20.27) respectively become in matrix form: 

1

1

( ) ( ) * ( ) *

( ) * ( ) ,

t

t r r

t

t t a a

t

V D 1 B 1

B V

 (20.28) 



Markov and Semi-Markov Reward Processes and Stochastic Annuities     801 

1

1

( , ) ( , ) * ( , ) *

( , ) * ( , ) ,

t

t s r sr
s

t
s

s t s t a s a

s t

V D 1 B 1

B V

 

where 1, as specified in previous chapters, represents the sum vector whose elements 
are all equal to 1. 

20.3.1.2. Second model 

Now we introduce the case of variable interest rates with as assumptions: 

a) rewards are fixed in time; 

b) rewards are given only for the permanence in the state; 

c) rewards are paid at the end of the period; 

d) interest rate r is variable. 
 
Under these hypotheses, it can be shown that we obtain the following formulae: 

1 1 1 1

1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ( ),

t m t

i i i ik i
h k h

m t

ik k
k

V t H t h b h

b V t

 (20.29) 

 

1 1 1 1

1 1

( , ) (1 ( , )) ( , ) ( , ) ( , )

( , ) ( , ) ( , ).

t m t

i i i ik i
h s k s h s

m t

ik k
k s

V s t H s t s h b s s h

b s V t s

(20.30) 

The matrix forms related to (20.29) and (20.30) are: 

1

1

( ) ( ) * ( ) ( ) * ( )

( ) * ( ) ( ) ,

t

t

t t a t a

t

V D 1 B 1

B V

 (20.31) 

1

1

( , ) ( , ) * ( , ) ( , ) * ( , )

( ) * ( , ) ( , ) ,

t

s

t

s

s t s t a s t s a s

t s

V D 1 B 1

B V

 (20.32) 
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where respectively it holds: 

1 1

( ) ( ), ( , ) ( , ).
t t

h h s

a t h a s t s h  

20.3.1.3. Third model 

The next step is the introduction of the variability of rewards so we assume that:  

a) rewards are variable in time; 

b) rewards are given only for the permanence in the state; 

c) rewards are paid at the end of the period; 

d) interest rate r is fixed. 
 
In this case the following results hold: 

1 1 1 1

1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ,

t m t
h h

i i i ik i
h k h

m t

ik k
k

V t H t h b h

b V t

 (20.33) 

1 1 1 1

1 1

( , ) (1 ( , )) ( ) ( , ) ( )

( , ) ( , ) .

t m t
h s h s

i i i ik i
h s k s h s

m t
s

ik k
k s

V s t H s t h b s h

b s V t

 (20.34) 

(20.33) and (20.34) in matrix form are: 

( ) ( )

1

1

( ) ( ) * ( ) ( ) * ( )

( ) * ( ) ,

t
t

t

t t t

t

V D 1 B 1

B V

 (20.35) 

( )

( )

1

1

( , ) ( , ) * ( , )

( , ) * ( , )

( , ) * ( , ) ,

t s

t
s

s

t
s

s

s t s t s t

s s

s t

V D 1

B 1

B V

 (20.36) 
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where 

1
1 1 1

2
2 2 2 ( )

(1) (2) ( )

(1) (2) ( )
( ) ,

(1) (2) ( )

h

h
m m m

t

t
t

t

 

and 

1 1 1

2 2 2

( 1) ( 2) ( )

( 1) ( 2) ( )
( , )

( 1) ( 2) ( )m m m

s s t

s s t
s t

s s t

. 

20.3.1.4. Fourth model 

For the case of variable interest rates with variable rewards, we assume that: 

a) rewards are variable in time; 

b) rewards are given only for the permanence in the state; 

c) rewards are paid at the end of the period; 

d) interest rates are variable in time. 
 
Here, the evolution equation takes the form: 

1 1 1 1

1 1

( ) (1 ( )) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

t m t

i i i ik i
h k h

m t

ik k
k

V t H t h h b h h

b V t

  (20.37) 

1

1 1 1 1 1

( , ) (1 ( , )) ( ) ( , )

( , ) ( ) ( , ) ( , ) ( , ) ( , ).

t

i i i
h s

m t m t

ik i ik k
k s h s k s

V s t H s t h s h

b s h s h b s V t s  (20.38) 

Matrix forms of (20.37) and (20.38) respectively are: 

1

1

( ) ( ) * ( ) ( ) ( ) * ( ) ( )

( ) * ( ) ( ) ,

t

t

t t t t

t

V D 1 B 1

B V

 (20.39) 
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1

1

( , ) ( , ) * ( , ) ( , )

( , ) * ( , ) ( , )

( , ) * ( , ) ( , )

t

s

t

s

s t s t s t s t

s s s

s t s

V D 1

B 1

B V

 (20.40) 

where 

(1) ( 1)

(2) ( 2)
( ) , ( , ) .

( ) ( )

s

s
t s t

t t

 

20.3.1.5. Fifth model 

The next step will introduce the  rewards in the case of a fixed interest rate. 
 
We have the following assumptions: 

a) rewards are variable in time; 

b) rewards are given for the permanence in the state and at a given transition; 

c) rewards are paid at the end of the period; 

d) interest rate r is fixed. 
 
Under these hypotheses, the homogenous general formula is the following: 

1 1 1 1

1 1 1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

t m t
h h

i i i ik i
h k h

m t m t

ik ik ik k
k k

V t H t h b h

b b V t

 (20.41) 

Here too, the meaning of relation (20.41) can be easily understood with a 
subdivision into four parts. 

 
Due to of the presence of lump sums in the RMPV, given or taken at change of 

state times, let us say that the sum of the last two terms 

1 1 1 1

( ) ( ) ( ) ( )
m t m t

ik ik ik k
k k

b b V t  (20.42)  
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concerning the rewards ( )ik  are paid or received at the transition moment and so 
must be discounted for a time of  periods as ( )kV t . 

 
The corresponding non-homogenous formula is the following: 

1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( ) ( , ) ( )

( , ) ( ) ( , ) ( , ) .

t m t
h s h s

i i i ik i
h s k s h s

m t m t
s s

ik ik ik k
k s k s

V s t H s t h b s h

b s b s V t

 (20.43) 

Matrix forms of (20.41) and (20.43) are: 

( ) ( )

1

1 1

( ) ( ) * ( ) ( ) * ( )

( ) ( ) * ( ) * ( ) ,

t
t

t t

t t t

t

V D 1 B 1

B 1 B V

 (20.44) 

( )

1

( )

1 1

( , ) ( , ) * ( , ) ( , ) * ( , )

( , ) ( ) * ( , ) * ( , ) .

t
t s s

s

t t
s s

s s

s t s t s t s t

s s s

V D 1 B V

B 1 B 1

 (20.45) 

20.3.1.6. Sixth model 

The next model extends the preceding model with the variability of interest rates 
that is under the following assumptions: 

a) rewards are variable in time; 

b) rewards are given for the permanence in the state and at a given transition; 

c) rewards are paid at the end of the period; 

d) interest rates are variable in time. 
 
All these hypotheses lead us to the following relations: 

1 1 1 1

1 1 1 1

( ) (1 ( )) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

t m t

i i i ik i
h k h

m t m t

ik ik ik k
k k

V t H t h h b h h

b b V t

 (20.46) 
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1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( ) ( , ) ( , ) ( ) ( , )

( , ) ( ) , ( , ) ( , ) , .

t m t

i i i ik i
h s k s h s

m t m t

ik ik ik k
k s k s

V s t H s t h s h b s h s h

b s s b s V t s

(20.47) 

(20.46) and (20.47) matrix forms are: 

1

1 1

( ) ( ) * ( ) ( ) ( ) * ( ) ( )

( ) ( ) ( ) * ( ) * ( ) ( ) ,

t

t t

t t t t

t

V D 1 B 1

B 1 B V

 (20.48) 

1 1

1

( , ) ( , ) * ( , ) ( , )

( , ) * ( , ) ( , ) ( , ) ( ) ( , ) *

( , ) * ( , ) ( , ) .

t t

s s

t

s

s t s t s t s t

s t s s s

s s s

V D 1

B V B 1

B 1

 (20.49) 

20.3.1.7. Seventh model 

For our last case, we consider non-homogenous rewards and interest rate. 
Therefore, the basic assumptions are: 

a) rewards are non-homogenous; 

b) rewards are also given at the transitions; 

c) rewards are paid at the end of the period; 

d) interest rate is non-homogenous. 
 
It can easily be verified that the evolution equation takes the form: 

1

1 1 1

1 1 1 1

( , ) (1 ( , )) ( , ) ( , )

( , ) ( , ) ( , )

( , ) , ( , ) ( , ) , ( , ).

t

i i i
s

m t

ik i
k s s

m t m t

ik ik ik k
k s k s

V s t H s t s s

b s s s

b s s s b s s V t

 (20.50) 
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(20.50) in matrix form becomes 

1

1 1

1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) * ( , ) * ( , ) ( , )

t

s

t

s s

t t

s s

s t s t s s

s s s

s s s s t s

V D

B

B 1 B V

 (20.51) 

To conclude this section, we will present the most significant due cases. The 
reasoning is quite similar to the models for the immediate case but nevertheless, it is 
useful to classify the most interesting models. 

 
As above, we systematically treat the homogenous and non-homogenous cases. 

20.3.2. The due cases 

20.3.2.1. First model 

For the due case, our first model has the following assumptions 

a) rewards are fixed in time; 

b) rewards are given only for the permanence in the state; 

c) rewards are paid at the beginning of the period; 

d) interest rate r is fixed. 
 
Here, ( )iV t  ( ( , )iV s t ) represents the RMPV given that at time 0, (s) the system 

in state i and the rewards being paid at the beginning of the period. 
 
Under our hypotheses, the evolution equations take the form: 

1 1 1 1

( ) (1 ( )) ( ) ( ) ( ) ,
m t m t

i i i ik i ik kt r r
k k

V t H t a b a b V t (20.52) 

1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , ) .

m t

i i i ik it s r sr
k s

m t
s

ik k
k s

V s t H s t a b s a

b s V t

 (20.53) 
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The matrix forms of (20.52) and (20.53) respectively are 

1

1

( ) ( ) * ( ) *

( ) * ( )

t

t r r

t

t t a a

t

V D 1 B 1

B V

 (20.54) 

1

1

( , ) ( , ) * ( , ) *

( , ) * ( , )

t

t s r sr
s

t
s

s

s t s t a s a

s t

V D 1 B 1

B V

 (20.55) 

20.3.2.2. Second model 

We now consider variable rewards and variable interest rates to obtain the 
following assumptions: 

a) rewards are variable in time, 

b) rewards are given only for the permanence in the state, 

c) rewards are paid at the beginning of the period, 

d) interest rates are time dependent. 
 
The related evolution equations are: 

1 1

0 1 1 0

1 1

( ) (1 ( )) ( 1) ( ) ( ) ( 1) ( )

( ) ( ) ( ),

t m t

i i i ik i
k

m t

ik k
k

V t H t b

b V t  (20.56) 

1

1

1 1 1 1

( , ) (1 ( , )) ( 1) ( , )

( , ) ( 1) ( , ) ( , ) ( , ) ( , ).

t

i i i
s

m t m t
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k s s k s

V s t H s t s

b s s b s V t s  (20.57) 

The matrix forms of (20.56) and (20.57) are 

1

1

( ) ( ) * ( ) ( ) ( ) * ( ) ( )

( ) * ( ) ( )

t

t

t t t t

t

V D 1 B 1

B V

 (20.58) 
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1 1

( , ) ( , ) * ( , ) ( , )
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s t s t s t s t

s s s s t s

V D 1

B 1 B V
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where 
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20.3.2.3. Third model 

With the introduction of  rewards and with a fixed interest rate, the 
assumptions of our third model are: 

a) rewards are variable in time; 

b) rewards are given for the permanence in the state and at a given transition; 

c) rewards are paid at the beginning of the period; 

d) interest rate r is fixed. 
 
Under these hypotheses the equations are: 

1 1

0 1 1 0

1 1 1 1

( ) (1 ( )) ( 1) ( ) ( 1)

( ) ( ) ( ) ( ),

t m t

i i i ik i
k

m t m t

ik k ik ik
k k

V t H t b

b V t b  (20.60) 
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1

1 1 1 1

1

1 1

( , ) ( , ) ( ) ( , ) ( 1)

( , ) ( , ) (1 ( , )) ( 1) .

m t m t
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i ik ik ik i
k s k s s
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V s t b s b s
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(20.60) and (20.61) matrix forms are: 

( ) ( )
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1 1

( ) ( ) * ( ) ( ) * ( )

( ) ( ) * ( ) * ( )

t
t

t t

t t t
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where 

0

11
( )

1 1

1

1

1

t

t t

r

r

.
 

20.3.2.4. Fourth model 

Our last model introduces non-homogenous rewards and interest rates with the 
following assumptions: 

a) rewards are non-homogenous in time; 

b) rewards are also given at the transitions; 

c) rewards are paid at the beginning of the period; 

d) the interest rate is non-homogenous. 
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For this, the evolution equation has the following form: 

1

1

1 1 0

1 1 1 1

( , ) (1 ( , )) ( , 1) ( , )

( , ) ( , 1) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ).
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s b s V t s b s s

 (20.64) 

The matrix form of (20.64) is given by 

1

1 1

1
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s
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V D 1

B V B 1
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(20.65)

 

20.4. MRWP and stochastic annuities 

20.4.1. Stochastic annuities 

The annuity concept is very simple and can easily be understood by means of the 
following figure. 

 

Figure 20.1. Constant payment annuity-immediate 

where S represents the constant annuity payment. 
 

Figure 20.1 shows the simplest immediate case. 
 
The due case can be shown by the following figure. 

 

Figure 20.2. Constant payment annuity-due 
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Clearly, the payment can be variable. The simple problems to be dealt with are 
how to calculate the value at time 0 (present value) or at time n (capitalization value) 
of the annuity (see the first half of this book) 

 
S can be considered not as a simple variable but rather as a random variable. This 

r.v. can assume, in the case of payments that vary only because of state, the 
following values: 

1 2, , , mS S S S ,  (20.66) 

where iS  can be considered as the payment related to state i. 
 

Furthermore, if it is set that the value at time k will depend only on the value at 
time k-1, we are in Markov process hypotheses. A sum is associated with each state 
which means that we are in a Markov reward environment. The problem of 
calculating the present value of this first simple case corresponds to the simplest 
case of DTHMRWP presented. 

 
In this light, it now is possible to give the following definition. 
 

Definition 20.2 Discrete-time homogenous (non-homogenous) constant stochastic annuity 
 

Let: 

1,2, ,I m  

be the states of a system and A, B two persons. 
 

Furthermore, let 

1 2, , , ,m iS S S S   (20.67) 

be sums. 
 

The sum iS  will be paid or received from A to B if the system is in state i. These 
“payments” will be made from time 1s  [respectively s] up to time s n T  
[respectively 1 1s n T ]. 

 
We say that this financial operation is an immediate [respectively due] 

homogenous (non-homogenous) discrete-time constant stochastic annuity if: 

i) the transitions among the states are governed by a homogenous (non-
homogenous) discrete-time Markov Chain P ( ) ( )ijt p tP ; 

ii) when there is a transition from i to j, it is possible that a sum ij  is paid or 
received. 
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Each stochastic annuity can be seen as a discrete-time Markov reward process. 
The randomness is given by the fact that the periodic payment annuity is a r.v. Also, 
transition payments are allowed. 

 
In the case of a simple immediate annuity, Figure 20.1 becomes Figure 20.3, and 

the annuity value can assume one of the values of r.v. (20.66). 
 
Figure 20.4 gives the corresponding due case. 
 
We are concerned with outlining the fact that, by means of the figures, it is 

possible to see quite easily that Markov reward processes can be considered a 
natural generalization of the annuity concept.  

 

Figure 20.3. Constant stochastic annuity-immediate 

It is clear that the reward structure could have a more complex structure that, in any 
case, can be seen as a generalization of the example shown in the two figures.  

 

Figure 20.4. Constant stochastic annuity-due 
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It should be stated that this approach is not new in the actuarial environment; see, 
for example, Wolthuis (2003) and Daniel (2004). By means of our approach it is 
carried out in a more systematic way using the Markov reward process as the 
natural stochastic generalization of the annuity concept. 

 
It is our opinion that the connection between Markov reward processes and 

annuities is natural and that an annuity can be seen as the Markov reward process 
with only one state and only permanence rewards. 

 
In this light, within the field of finance it is possible to define Markov reward 

processes as stochastic annuities. 
 
This first step also allows the generalization of the payments of the annuities in 

case of permanence rewards and transition rewards. Furthermore, the permanence 
rewards can be dependent or independent on the transition. All these rewards can be 
fixed or can vary due to time. 

 
In the case of simple annuity, the payment can only vary due to time yet, in the 

case of stochastic annuity, clearly it can vary in the same way as the rewards, since 
rewards represent the payment generalization. 

20.4.2. Motorcar insurance application  

Stochastic annuities have many applications in the fields of finance and 
insurance. 

 
In a general sense, actuarial mathematics can be seen as a branch of financial 

mathematics. In any actuarial mathematics application, we have to tackle a 
stochastic event within a financial environment. As it is well known, actuarial 
mathematics uses mathematical tools for insurance problems. In this light, 
DTMRWP could be seen as a useful tool to directly solve insurance problems. 

 
In this section, DTMRWP will be applied to motor car bonus malus insurance 

rules that apply in Italy. 
 
For a general reference on bonus malus systems and their properties, see Lemaire 

(1995) and Sundt (1993). 
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This example will use a transition matrix related to the motor car bonus malus 
insurance rules that apply in Italy. In this case, the Markov model fits quite well 
because: 

1) the position of each insured person is given at the beginning of each year; 

2) there are precise rules that give the change of states as a function of the 
behavior of the insured person during the year; 

3) the future state depends only on the present one.  
 
The number of states is 18. 
 
Table 20.1 gives the evolution rules that hold in Italy for bonus malus insurance 

contract. 
 

 Arriving state according to claims 
Starting state 0 claim 1 claim 2 claims 3 claims 4 or more 

1 1 3 6 9 12 
2 1 4 7 10 13 
3 2 5 8 11 14 
4 3 6 9 12 15 
5 4 7 10 13 16 
6 5 8 11 14 17 
7 6 9 12 15 18 
8 7 10 13 16 18 
9 8 11 14 17 18 

10 9 12 15 18 18 
11 10 13 16 18 18 
12 11 14 17 18 18 
13 12 15 18 18 18 
14 13 16 18 18 18 
15 14 17 18 18 18 
16 15 18 18 18 18 
17 16 18 18 18 18 
18 17 18 18 18 18 

Table 20.1. Italian bonus malus evolution rules 

We are in possession of the history of 105,627 insured persons over a period of 
three years (1998, 1999, 2000). This means that it was possible consider 316,881 
real or virtual transitions. The Markov transition matrix that was obtained from the 
available data and taking into account the bonus malus Italian rules is given in 
Tables 20.2, 20.3 and 20.4. 
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States 1 2 3 4 5 6 
1 0.941655 0 0.056264 0 0 0.001973 
2 0.935097 0 0 0.062379 0 0 
3 0 0.941646 0 0 0.056611 0 
4 0 0 0.948892 0 0 0.049364 
5 0 0 0 0.945231 0 0 
6 0 0 0 0 0.949204 0 
7 0 0 0 0 0 0.934685 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.2. Transition matrix I 

States 7 8 9 10 11 12 
1 0 0 0.000081 0 0 0.000027 
2 0.002427 0 0 0.000097 0 0 
3 0 0.001574 0 0 0.000169 0 
4 0 0 0.001744 0 0 0 
5 0.052354 0 0 0.002314 0 0 
6 0 0.04908 0 0 0.00157 0 
7 0 0 0.061856 0 0 0.00339 
8 0.92227 0 0 0.073137 0 0 
9 0 0.914103 0 0 0.082621 0 

10 0 0 0.923854 0 0 0.071989 
11 0 0 0 0.92933 0 0 
12 0 0 0 0 0.930156 0 
13 0 0 0 0 0 0.937854 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.3. Transition matrix II 
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States 13 14 15 16 17 18 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0.000067 0 0 0.000034 0 0 

6 0 0.000146 0 0 0 0 

7 0 0 0.000069 0 0 0 

8 0.004246 0 0 0.00026 0 0.000087 

9 0 0.003185 0 0 0 0.000091 

10 0 0 0.003827 0 0 0.00033 

11 0.066723 0 0 0.003696 0 0.000251 

12 0 0.066697 0 0 0.002994 0.000153 

13 0 0 0.059651 0 0 0.002495 

14 0.920681 0 0 0.074704 0 0.004615 

15 0 0.885204 0 0 0.107143 0.007653 

16 0 0 0.777568 0 0 0.222432 

17 0 0 0 0.876733 0 0.123267 

18 0 0 0 0 0.888614 0.111386 

Table 20.4. Transition matrix III 

The payment of a claim by the insurance company can be seen as a lump sum 
(impulse or transition reward) paid by the insurer to the insured person. The model 
can be used to follow the financial evolution of a motor car insurance contract. 

 
In Table 20.5, the premiums (which can be seen as permanence rewards) that are 

paid in Naples for a car of 2,300 c.c. are reported. 
 
The example is constructed from the point of view of the insurance company and 

premiums are income for the company. It should be noted that these values 
correspond to the real premiums paid by an insured person in 2001 and officially 
given on the website of Assicurazioni Generali for that year. 
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States Permanence rewards 
1 1,037.5 
2 1,099.75 
3 1,162 
4 1,224.25 
5 1,286.5 
6 1,369.5 
7 1,452.5 
8 1,535.5 
9 1,618.5 
10 1,701.5 
11 1,826 
12 1,950.5 
13 2,075 
14 2,386.25 
15 2,697.5 
16 3,112.5 
17 3,631.25 
18 4,150 

Table 20.5. Naples premiums 

In this case, permanence and impulse rewards should increase roughly in line 
with the inflation rate. In this light and with the aim of simplification, we suppose 
that the rewards are fixed in time. It is clear that the model can manage time variable 
premiums and benefits. 

 
We suppose that we have a yearly fixed discount factor of 1/1.03. In the model, a 

stochastic interest rate could be easily introduced (see Janssen and Manca (2002)), 
but we do not think that this aspect is central in the presentation of our model. 

 
Tables 20.6, 20.7 and 20.8 give the mean values of the expenses that the 

insurance company should pay for the claims made by the insured person. 
 
More clearly stated, the element –7,772.51 represents the expenses that, on 

average, the company has to pay for the two accidents that an insured person who 
was in state 1 (lowest bonus malus class) had and which then took him to state 6. 

 
These tables were constructed starting from the observed data in our possession. 
 
From the point of view of the model, the elements of these three tables are 

transition rewards. More precisely, and as already mentioned, they can be seen as 
lump sums (impulse rewards) paid by the company at the time of the accident. In 
this case, being expenses for the company, they are negative. 
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States 1 2 3 4 5 6 
1 0 0 –2,185.57 0 0 –7,772.51 
2 0 0 0 –1,956.4 0 0 
3 0 0 0 0 –2,188.25 0 
4 0 0 0 0 0 –2,853.19 
5 0 0 0 0 0 0 
6 0 0 0 0 0 0 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.6. Mean insurance payments I 

States 7 8 9 10 11 12 
1 0 0 –3,240.77 0 0 –7,728.78 
2 –3,196.16 0 0 –9,004.43 0 0 
3 0 –2,846.52 0 0 –4,498.34 0 
4 0 0 –2,920.39 0 0 0 
5 –2,245.02 0 0 –3,945.44 0 0 
6 0 –2,676.12 0 0 –3,076.05 0 
7 0 0 –2,086.66 0 0 –3,391.18 
8 0 0 0 –2,198.02 0 0 
9 0 0 0 0 –2,017.77 0 
10 0 0 0 0 0 –2,103.01 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 0 0 0 0 0 
15 0 0 0 0 0 0 
16 0 0 0 0 0 0 
17 0 0 0 0 0 0 
18 0 0 0 0 0 0 

Table 20.7. Mean insurance payments II 
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States 13 14 15 16 17 18 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 –3,240.77 0 0 –6,274.95 0 0 

6 0 –6,703.61 0 0 0 0 

7 0 0 –1,572.09 0 0 0 

8 –4,027.26 0 0 –3,286.39 0 –3,629.14 

9 0 –6,397.63 0 0 0 –3,687.5 

10 0 0 –4,931.93 0 0 –5,165.44 

11 –3,110.63 0 0 –4,710.94 0 –5,993.19 

12 0 –3,048.69 0 0 –3,893.94 –1,1602.3 

13 0 0 –2,613.27 0 0 –8,271.51 

14 0 0 0 –3,564.01 0 –4,145.45 

15 0 0 0 0 –2,468.23 –7,356.78 

16 0 0 0 0 0 –2,883.68 

17 0 0 0 0 0 –3,764.32 

18 0 0 0 0 0 –2,578.55 

Table 20.8. Mean insurance payments III 

Tables 20.9, 20.10 and 20.11 report the present values of the mean total rewards 
that the company earns in 1 year, in 2 years and so on up to 20 years. Each column 
represents the starting state at time 0. 

 
The permanence reward (insurance premium) increases as a function of the state 

and therefore the money earned by the company increases as a function of the 
starting state as well. 

 
The results are interesting and show that, in this case, the company will earn a lot 

of money from this kind of insurance contract. The illustrated case is very particular. 
In Naples, the premiums are higher than in the other parts of Italy, the car is big and 
for this reason too the premiums are very high. 
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 Starting state 
Years 1 2 3 4 5 6 

1 902.77 972.89 1,036.64 1,082.56 1,163.11 1,236.34 
2 1,791.82 1,866.47 1,935.73 2,048.02 2,191.17 2,312.57 
3 2,656.91 2,732.23 2,809.19 2,930.74 3,083.67 3,270.51 
4 3,497.68 3,573.83 3,652.22 3,775.21 3,941.71 4,143.27 
5 4,314.34 4,390.67 4,469.36 4,594.66 4,764.41 4,969.33 
6 5,107.32 5,183.70 5,262.80 5,388.66 5,559.25 5,768.62 
7 5,877.27 5,953.71 6,032.93 6,158.92 6,330.56 6,541.29 
8 6,624.83 6,701.29 6,780.54 6,906.73 7,078.71 7,289.89 
9 7,350.64 7,427.09 7,506.39 7,632.64 7,804.75 8,016.42 

10 8,055.31 8,131.77 8,211.08 8,337.36 8,509.59 8,721.46 
11 8,739.46 8,815.92 8,895.24 9,021.54 9,193.83 9,405.77 
12 9,403.68 9,480.15 9,559.48 9,685.79 9,858.10 10,070.11 
13 10,048.57 10,125.03 10,204.36 10,330.68 10,503.01 10,715.05 
14 10,674.67 10,751.13 10,830.46 10,956.78 11,129.12 11,341.18 
15 11,282.53 11,359.00 11,438.33 11,564.65 11,736.99 11,949.07 
16 11,872.69 11,949.16 12,028.49 12,154.81 12,327.16 12,539.24 
17 12,445.66 12,522.13 12,601.46 12,727.78 12,900.13 13,112.22 
18 13,001.94 13,078.41 13,157.74 13,284.06 13,456.42 13,668.51 
19 13,542.02 13,618.49 13,697.82 13,824.14 13,996.50 14,208.59 
20 14,066.37 14,142.84 14,222.17 14,348.49 14,520.85 14,732.94 

Table 20.9. Present values of Naples mean total rewards I 

 Starting state 
Years 7 8 9 10 11 12 

1 1,315.92 1,361.69 1,436.54 1,534.53 1,606.13 1,740.04 
2 2,469.70 2,593.59 2,753.00 2,900.66 3,052.08 3,286.69 
3 3,492.55 3,674.17 3,909.79 4,134.20 4,367.87 4,657.60 
4 4,382.20 4,634.06 4,938.46 5,222.52 5,525.47 5,891.88 
5 5,228.55 5,505.30 5,835.84 6,187.59 6,556.49 6,983.41 
6 6,034.35 6,319.67 6,678.49 7,060.54 7,457.96 7,950.03 
7 6,809.20 7,103.35 7,473.42 7,867.06 8,296.11 8,822.13 
8 7,560.03 7,857.72 8,232.06 8,638.05 9,081.02 9,621.21 
9 8,287.45 8,586.54 8,965.12 9,376.39 9,824.94 10,380.44 

10 8,992.84 9,293.23 9,673.65 10,087.09 10,541.51 11,104.04 
11 9,677.48 9,978.47 10,359.67 10,775.25 11,232.34 11,797.92 
12 10,341.97 10,643.23 11,025.15 11,441.72 11,899.99 12,468.63 
13 10,986.98 11,288.47 11,670.74 12,087.76 12,547.16 13,117.28 
14 11,613.17 11,914.78 12,297.21 12,714.64 13,174.59 13,745.41 
15 12,221.08 12,522.75 12,905.32 13,322.96 13,783.17 14,354.63 
16 12,811.27 13,112.98 13,495.62 13,913.36 14,373.81 14,945.60 
17 13,384.26 13,686.00 14,068.67 14,486.50 14,947.07 15,519.02 
18 13,940.55 14,242.30 14,625.01 15,042.88 15,503.51 16,075.60 
19 14,480.63 14,782.40 15,165.12 15,583.01 16,043.70 16,615.86 
20 15,004.99 15,306.76 15,689.48 16,107.40 16,568.11 17,140.31 

Table 20.10. Present values of Naples mean total rewards II 
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 Starting state 
Years 13 14 15 16 17 18 

1 1,903.62 2,109.18 2,386.09 2,489.76 3,180.75 3,871.15 
2 3,538.69 3,915.36 4,368.44 4,882.38 5,882.82 6,518.34 
3 4,997.82 5,490.12 6,098.49 6,905.42 8,018.71 8,901.15 
4 6,314.29 6,882.64 7,623.49 8,611.49 9,873.82 10,918.70 
5 7,472.94 8,130.11 8,978.07 10,108.28 11,489.33 12,626.28 
6 8,505.23 9,232.41 10,168.21 11,433.54 12,903.74 14,115.84 
7 9,409.12 10,207.05 11,226.54 12,600.42 14,143.75 15,430.51 
8 10,243.01 11,083.99 12,154.42 13,629.21 15,242.53 16,587.94 
9 11,019.16 11,881.88 13,001.76 14,549.49 16,208.08 17,608.71 
10 11,750.15 12,634.42 13,783.26 15,376.53 17,078.46 18,518.44 
11 12,451.75 13,347.40 14,511.96 16,143.98 17,872.64 19,335.34 
12 13,126.18 14,027.61 15,206.00 16,861.44 18,604.95 20,088.86 
13 13,776.58 14,683.14 15,869.25 17,538.23 19,294.90 20,791.12 
14 14,406.36 15,315.68 16,505.98 18,185.46 19,949.58 21,452.49 
15 15,016.42 15,927.19 17,120.85 18,806.47 20,574.67 22,083.25 
16 15,607.81 16,519.76 17,715.31 19,404.45 21,175.93 22,687.72 
17 16,181.59 17,094.19 18,290.79 19,982.49 21,755.83 23,269.37 
18 16,738.36 17,651.32 18,848.70 20,541.89 22,316.27 23,831.17 
19 17,278.73 18,191.95 19,389.78 21,083.84 22,858.99 24,374.67 
20 17,803.26 18,716.63 19,914.72 21,609.38 23,384.97 24,901.09 

Table 20.11. Present values of Naples mean total rewards III 

20.5. DTSMRWP and generalized stochastic annuities (GSA) 

20.5.1. Generalized stochastic annuities (GSA) 

The semi-Markov reward process is a generalization of the Markov reward 
process. 

 
In discrete-time, the generalization of the SMRWP has the property that the 

waiting time before a transition is a r.v. 
 
In the discrete-time Markov case, the transitions occur at each time step (the d.f 

that rules the transition is geometric). They can be real transitions, in the case where 
the system that goes all over the given system changes the state, or virtual in the 
case in which after the transition it remains in the same state. However, at each 
period there is a transition. 

 
In the discrete-time Markov chain case, the time evolution of a trajectory can be 

described by means of Figure 20.5. 
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The time evolution of a trajectory of a discrete-time semi-Markov process is 
described in Figure 20.6. 

 
The behavior of the two trajectories is not the same. The transition time in semi-

Markov processes is random. A virtual transition case is shown in Figure 20.6. 
 

 

Figure 20.5. A trajectory of discrete-time Markov reward process 

We attach a reward structure to the related process. In this light we can give the 
following definition. 

 
Definition 20.3 A generalized homogenous (non-homogenous) discrete-time 
stochastic annuity is a homogenous (non-homogenous) discrete-time stochastic 
annuity in which the following property holds: 

i) the transitions among the states follow a homogenous (non-homogenous) 
discrete-time semi-Markov process. 

 
This financial concept naturally corresponds to the homogenous (non-

homogenous) discrete-time semi-Markov reward process as defined in section 20.3. 
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Figure 20.6. A trajectory of DTNH semi-Markov reward process 

20.5.2. GSA examples 

In Haberman and Pitacco (1999), Figure 20.7 is given to illustrate a trajectory of 
the stochastic process that describes a general insurance contract. 

 
The depicted model has four states. It is evident that the transition time is 

naturally random. 
 
A general insurance contract can be considered naturally to evolve in a semi-

Markov environment. In the figures there are the states of the systems on the y axis, 
the time on the x axis; besides in Figure 20.7 the premiums and benefits of the 
insurance contract are also considered.  

 

Figure 20.7. Trajectory evolution of a general insurance contract 

Clearly, premiums and benefits can be considered as rewards. More precisely, in 
an HSMRWP environment we have the following: 
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1 1( ) ( )p t t  represents the premium paid by the insured. It is a permanence 
reward that can be constant or variable in time depending on the insurance contract; 

2 2( ) ( )b t t  gives a benefit flow paid by the insurance company. Also in 
this case it is a constant or variable permanence reward; 

3 4 3( ) ( )d t t  represents a discontinuous variable benefit flow where 

4 3
3

4 3

if

if

( )
( )

k t t t t
t

b t t t
 clearly could also be 4 3( ) 0k t t t t ; 

13 3 13( ) ( )c t t  and 34 5 34( ) ( )c t t  are transition rewards. 
 
In this light we can say that any insurance contract can be modeled by means of 

SMRWP (MRWP can be seen as a particular case of SMRWP)! 
 
In some cases, the homogenous environment is enough to model the insurance 

phenomenon. In other cases, the non-homogenity has to be introduced. Furthermore, 
in more composite cases the non-homogenous environment must be generalized to 
model the phenomenon (see Manca and Janssen (2007)). 

 
In this first approach, we will consider the first examples that are reported in 

Haberman and Pitacco (1999). The related rewards evolution equations will be 
written. 

 
The values that represent premiums and benefits have opposite algebraic signs. 

In these examples we will apply the discounted DTHSMRWP. Furthermore, we will 
suppose that the interest rate intensity  is constant. 

20.5.2.1. Two states examples 

 

Figure 20.8. 1 = alive state; 2 = dead state 

Figure 20.8 can be used to depict three different cases of insurance: 

(i) temporary assurance; 

(ii) endowment assurance; 

(iii) deferred annuity. 
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(i) In the case of death a constant sum c is assured and a premium at a constant 
rate p is paid at beginning of period. The policy ends at time T. So we have: 

1

if

if

0,1 , 1
( )

0

p t T
t

t T
,      12 , 0c t T . 

In all three cases, state 2 is an absorbing state and after time T the insurance 
contract is extinguished. The premiums are always anticipated. Furthermore, in this 
case 2 0 . 1( )t  can be considered as a constant permanence reward and the 
evolution equations will follow the system for a time T. 

 
The evolution equation is the equation with a fixed interest rate, fixed time due 

permanence rewards and fixed time transition reward. 
 
Under all these hypotheses we can write the following evolution equations: 

1 1 1 12 1
1

12 12
1

( ) 1 ( ) ( )

( )

t

t

t

V t H t a b a

b

      1 t T  (20.68) 

2 ( ) 0, .V t t   (20.69) 

1( )V t  represents the present value of the temporary assurance at time 0 for a 
time period t (backward reserve). 

 

(ii) In the endowment assurance, a sum c is insured in both the cases of death and 
of survival to maturity T. We can have the following positions: 

1

if

if

1, ,
( )

0

p t T
t

t T
,    12 , 0c t T  

Also, in this case 2 0 . 1( )t  can be considered as a variable permanence 
reward and the evolution equations will follow the system for a time T. 

 
The evolution equation is the equation with a fixed interest rate, variable time 

permanence rewards and fixed time transition reward. 
 
We can write the following evolution equation:  
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1

1 1 1
0

1

12 1 12 12
1 0 1

( ) 1 ( ) ( 1)

( ) ( 1) ( )

t

t t

V t H t

b b

 0 t T  

Also, in this case 1( )V t  represents the backward reserve at time 0 for a period t 
and (20.69) holds. 

 

(iii) In the third case, the deferred annuity premiums are paid over the time 
period 11, ,T  when the insured person is in state 1. Also, the benefits are paid 
continuously from time 1T  until the death of the insured, and as usual the premiums 
are anticipated and the claim amounts unknown, we recognize the well known 
phenomenon of inversion of the production cycle in insurance. 

 
In this case we have: 

1
1

1

if

if

1 ,
( )

,

p t T
t

b T t x
 (20.70) 

where  represents the maximum age reachable by a person and x the insured age 
at the formation the contract. 
 

In this case, 2 0 . 1( )t  can be considered as a variable permanence reward 
and the evolution equations will follow the system for a time x . 

 
The evolution equation is the equation with a fixed interest rate, variable time 

permanence rewards and no transition rewards.  
 
We do not present this case but we can easily write the following evolution 

equation:  

1 1

1 1 1 12 1
0 1 0

( ) 1 ( ) ( 1) ( ) ( 1)
t t

V t H t b  (20.71) 

In this case, 1( )V t  represents the backward reserve at time t and (20.69) holds.  
 
In these three cases, the dead state does not give any permanence reward. It 

allows for the end of the contract and, in the first two cases, before the natural 
maturity. 
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Another two states example, given in Haberman and Pitacco, is as follows. 
 

 

Figure 20.9. 1 = employed; 2 = unemployed 

In this case, the model can be used to study the annuity benefit in the case of 
unemployment. The dead state, in this two states model, is not considered because, 
as specified in Haberman and Pitacco (1999), the age range covered by such 
insurance contracts is characterized by low probabilities of death relative to the 
probabilities of moving from state 1 to state 2 or from state 2 to state 1, and because 
the financial effects of death may be small in relation to that of unemployment. 

 
We will suppose that the premiums and benefits are fixed in time, but it is also 

possible to consider them variable without any difficulty. Under these hypotheses 
we obtain: 

1 2

if if
and

if if

1 1
( ) ( )

0 0

p t T b t T
t t

t T t T
 (20.72) 

where p is the premium paid by the insured, b is the benefit that he receives in the 
unemployment case and T W x , W is the maximum working age and x the 
insured age at the contractual formation. 1( )t  and 2 ( )t  could be considered as 
constant permanence rewards and the evolution equations will follow the system for 
a time T. In this case, because of the different period of payments we have a due 
case for premiums and an immediate case for claims. 
 

The evolution equations will be the following: 

1 1 1 12 1
1

12 2
1

( ) 1 ( ) ( )

( ) ( )

t

t

t

V t H t a b a

b V t

 (20.73) 

2 2 2 21 2
1

12 1
1

( ) 1 ( ) ( )

( ) ( )

t

t

t

V t H t a b a

b V t

 (20.74) 
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(20.73) represents the mean present value that an insured has at time t if it starts 
at time 0 in state 1. (20.74) has the same meaning but this time starting in state 2. 

 
In all the cases that we have considered there are no possibility of virtual 

transitions, which means that 0iip  and so also 0iiQ  and in the evolution 
equation only 12 21orb b  is considered. 

20.5.2.2. Three states examples 

 

Figure 20.10. Three state graph for the two three state examples 

Figure 20.10 can be used for the description of two cases: 

(i) a temporary assurance with a rider benefit in the case of accidental death; 

(ii) a lump sum benefit in the case of permanent and total disability. 

 
In the first case, the three states will have the following meaning: 

1 = alive; 

2 = dead (other causes); 

3 = dead (accident). 
 
Two different causes of death are considered and the lump sums are a function of 

the death cause. We have: 

1

if

if

1
( )

0

p t T
t

t T
  12 13, ', 0c c t T  

The evolution equation is similar to (20.68).  

3

1 1 1 1 1
2 1

3

1 1
2 1

( ) 1 ( ) ( )

( )

t

kt
k

t

k k
k

V t H t a b a

b

    0 t T  
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2 3( ) 0, ( ) 0, .V t V t t   (20.75) 

In the other example related to Figure 20.10 a lump sum will be paid in the case 
of a permanent and total disability. The states are: 

1 = active; 

2 = disabled (permanent disability); 

3 = dead.  
The considered rewards are: 

1

if 0
( )

0 if

p t T
t

t T
  12 , 0c t T   

The evolution equation is the following: 

3

1 1 1 1 1
2 1

12 12
1

( ) 1 ( ) ( )

( )

t

kt
k

t

V t H t a b a

b

 (20.76) 

(20.75) holds also in this case. 
 

Remark 20.2 The time continuous version of the theory and other examples are 
given in Janssen and Manca (2006, 2007). 


